THE FUTURE OF PLASTIC RECYCLING

UPGRADE POST-CONSUMER PLASTIC: MATERIAL AND COLOR SORTING

László Székely Plastic Recycling in Reality Ystad, 09. May 2019

CONTENT

- Who is TOMRA?
- Detection and sorting technologies.
- Plastics facts and figures.
- High quality recycling.
- Design for recycling.
- Summary.

BROAD SENSOR PORTFOLIO

WE SUPPORT CUSTOMERS ON ALL CONTINENTS

SENSOR-BASED SORTING SYSTEMS – RECYCLING

AUTOSORT

- FLYING BEAM[®]: continuous signal correction, integrated light source, enhanced light distribution
- flexible sensor configuration (NIR/VIS/EM)
- optimized sensor system

COMBISENSE CHUTE

- FLUID COOL®
- dual processing technology
- simultaneous single-point detection
- double-sided detection

AUTOSORT FLAKE

- Simultaneous material, metal and color detection
- FLYING BEAM[®]: continuous signal correction, integrated light source, enhanced light distribution
- highest available sensor resolution
- optimized sensor system

AUTOSORT LASER

- Independent background system
- Simultaneous single-point detection
- Glass vs. transparent polymer recognition
- Fully flexible sensor configuration
- Unique mechanical design built for highest safety standards

COMBISENSE

- FLUID COOL®
- dual processing technology
- auto-adjustable ejection module

FINDER

- SUPPIXX[®] technology
- Z-TECT technology
- IOR technology

X-TRACT

- Dual processing technology
- Highest quality of secondary material in metal applications
- largest installed base worldwide

AUTOSORT/FINDER with LOD Feature

- Equipment upgrade with minimal initial investment
- Independent background system

SENSOR-BASED SORTING – OPERATING PRINCIPLE

7

SENSOR-BASED SORTING – OPERATING PRINCIPLE

- High-tech sensors to identify objects on a transport system.
- High speed processing of information (material, size, color, shape and position of objects).
- Precise sorting by air jets.
- Product specific equipment design often including multiple technologies to maximize sorting efficiency.

FIELD OF ACTIVITY – EXAMPLES OF SORTING PLANTS

Romerike, Norway

- Municipal solid waste (MSW): 40 t/h
- 16 Sensor based sorting systems (NIR)
- Sorted products:
 - PE Film
 - PET
 - HDPE
 - PP
 - Mixed Plastics
 - Mixed Paper
 - Metals (Fe/NFe)
 - Organic

FIELD OF ACTIVITY – EXAMPLES OF SORTING PLANTS

Motala, Sweden

- Packaging waste: 17,5 t/h
- 22 Sensor based sorting systems (NIR)
- Sorted products:
 - PE Film
 - PET Bottles
 - PET Trays
 - HDPE white/transparent
 - HDPE mixed color
 - PP
 - Mixed plastics
 - Metals (Fe/NFe)

PLASTIC PACKAGING MATERIAL FLOWS

FUTURE RECYCLING TARGETS

	Today situation	2025	2030
Overall packaging		65%	70%
Plastics	22,5%	50%	55%
Wood	15%	25%	30%
FE Metals	50%	70%	80%
Aluminium	30%	50%	60%
Glass	60%	70%	75%
Paper & Cardboard	60%	75%	85%
Hausehold waste		55%	60%

EU ist starting, ROW will follow!

Other drivers are:

- High disposal costs
- Potential savings
- China effect
- Green thinking
- Available technology
- Customer demand
- Image saving

SITUATION WITHIN PLASTIC IN EU AND CHANGES COMING

DESTINY OF PLASTICS (MAINLY POLYOLEFINS) TODAY

Recycling is not always recycling!

- Recycling of polyolefins often results in downcycling of the material, which means only products of lower quality standard can be made with the recycled material.
- The recycling process makes the difference between high and low quality recycling.

POST CONSUMER PLASTICS – HIGH QUALITY RECYCLING

Since 2014 large scale post consumer plastic recycling project/trials in collaboration with several brand owners!

 Upgrade post-consumer PO's to a level that makes it possible to replace virgin material with up to 100% recycled material.

HDPE/PP MATERIAL OUT OF DIFFERENT SOURCES – FEEDSTOCK

Packaging waste

HIGH QUALITY PP RECYCLING FROM MSW

Material and color

sorting.

HIGH QUALITY PP RECYCLING FROM MSW

g by d color hation

- Grinding
- Washing
- Flake sorting by material and color
- Extrusion
- Decontamination

HIGH QUALITY PP RECYCLING FROM MSW

PRODUCT QUALITY, CHEMICAL MEASUREMENTS IN FINAL PRODUCTS

Organic acids			
Parabene			
Further preservatives			
Azo (22 amine + xylidine)			
Biocides			
Formaldehyde	its		
Bisphenol-A migration	limits		
Chloroparaffins			
Dimethylfumarate	V		
Brom, Biphenyls and Biphenyl ether	V		
Flame retardants, brominated phenols	All results		
Flame retardants, organophosphates	Ŋ		
Flame retardents, TEPA	ě		
Metals			
Heavy metals	A		
Organotin compounds			
Plasticizer			
Polycyclic aromatic hydrocarbons			
Vhromium			
Triclosane			

DESCRIPTION OF TRIALS – DEVELOPMENT WORK

INDUSTRIALIZING THE PROCESS FOR RECYCLED PLASTIC

- Create a demand for the plastic through the process.
- Output to be of high quality in order to replace virgin material up to 100%.
- Extract plastics from all waste streams (incl. landfill and incineration) to satisfy demand.
- Feasibility proven, working with multiple partners on commercialization.

WHAT DOES IT MEAN 'IT IS RECYCLABLE'

It is collected - introduction of waste collection systems globally.

It is detectable/sortable - make sure that the optical sorters can identify main used material. Please use the commonly sorted and recycled materials e.g. PE, PP, PET.

It is recycled/processed - make sure that labels and glues can be washed off. Do not use material which will obstruct the reprocessing e.g. silicone.

Exists an application - the recyclate can be used for various applications.

DESIGN FOR RECYCLING – ECODESIGN WORKSHOP

Nye etiketter redder 260 tonn plast

Idun Tomatketchup og Idun Sennep får i vinter nye etiketter som øker resirkuleringsgraden av flaskene til over 70 prosent.

15.02.2019

SORTING SOLUTIONS RECYCLING

DESIGN FOR RECYCLING – FULL BODY SLEEVE PET-BOTTLE

Overview of several PET-label spectra

DESIGN FOR RECYCLING – BLACK PACKAGING

The sample is fully recognized as PET

The material gives no detectable information

- Around the world, **PET bottles** are high-quality recycled (bottle-to-bottle).
- Most of HDPE/PP/PET non-bottle and LDPE is primarily recycled into lower quality products, if sorted/recycled at all.
- With good sorting and washing equipment, most plastics could be high-quality recycled, independent from the post consumer waste source.
- The sorting technology will **continue to evolve**.

Two main issues:

- Just a small part of plastic is sorted out of waste.
- Some packaging materials are designed in a way that sorting or recycling is not possible/difficult, but currently increased focus of packaging producers on design for recycling

"Museums of the world save the past, recyclers - the future" www.tomra.com/recycling